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Abstract This paper proposes mathematical programming models with probabilistic con-
straints in order to address incident response and resource allocation problems for the plan-
ning of traffic incident management operations. For the incident response planning, we use
the concept of quality of service during a potential incident to give the decision-maker the
flexibility to determine the optimal policy in response to various possible situations. An
integer programming model with probabilistic constraints is also proposed to address the
incident response problem with stochastic resource requirements at the sites of incidents.
For the resource allocation planning, we introduce a mathematical model to determine the
number of service vehicles allocated to each depot to meet the resource requirements of
the incidents by taking into account the stochastic nature of the resource requirement and
incident occurrence probabilities. A detailed case study for the incident resource allocation
problem is included to demonstrate the use of proposed model in a real-world context. The
paper concludes with a summary of results and recommendations for future research.
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1 Introduction

Traffic incidents account for approximately 60 percent of the vehicle-hours lost due to con-
gestion annually (National Conference on TIM 2002). It is now widely accepted that these
congestion and congestion-related problems can be decreased by the proper use of an effi-
cient incident management system. Since the initial investment, maintenance cost and oper-
ating cost of each response unit are considerable, there is a great need for reliable decision-
support models to help evaluate and optimize the performance of such systems (Lindley
1989).

Increased attention in literature is focused on the incident response problem. The need
for improved incident response models and the data available for developing such models
were discussed in Ozbay and Kachroo (1999). Recognizing the highly stochastic nature of
traffic and incident management operations, Pal and Sinha (2002), introduced a simulation
model that could be used in designing a new freeway service patrol, as well as improving
the operations of existing programs. In a paper by Ozbay and Bartin (2003), a simulation
model was developed using ARENA (Kelton et al. 2001) simulation package, and was used
to model and examine the effects of various incident management strategies for the incident
management operations on the Washington D.C. beltway network. Repede and Bernardo
(1994) used a simulation based decision support system for locating emergency medical ve-
hicles. However, stochastic computer simulation might be time consuming especially when
running multiple replications for real-size networks to obtain statistically significant results.
Another problem with computer simulation is the difficulty in analyzing various compo-
nents of the incident management problem in a methodological way due to the possibly
quite large size of such variables when real networks are employed. In fact, Pal and Sinha
(2002) pointed out the need for a systematic procedure to optimally design a freeway service
patrol program using simulation. However, they and others clearly recognize the calibration,
computational, and analysis related problems of simulation based approaches when a full or
partial design of experiments approach is adopted.

Besides computer simulation, mathematical modeling is another frequently used ap-
proach to study incident management problems. Initial studies involve location-allocation
of emergency service facilities in the context of p-median problem (see e.g., Hakimi 1964),
set covering problem (see e.g., Toregas et al. 1971), maximal covering problem (see, e.g.,
Church and ReVelle 1974; White and Case 1974), expected maximal covering problem
(Daskin 1983) (also see the references in Daskin 1987). Daskin (1987) formulated multi-
objective mixed integer programming (MIP) problems to simultaneously locate, dispatch
and route emergency vehicles. Zografos et al. (1993) proposed an analytical framework that
could minimize the freeway incident delays through the optimum deployment of traffic flow
restoration units (TFRU). According to the authors of this study, this model has been proven
to be an effective tool that can model and evaluate the effects of deployment of TFRU on
the overall freeway incident delays. Pal and Sinha (1997) constructed a mixed integer pro-
gramming (MIP) model to determine optimal locations for response vehicles that minimizes
the annual cost of response vehicles subject to a constraint on the maximum number of ve-
hicles. It is assumed that the frequencies of incidents at potential sites in the network are
given. Petty (1997) proposed a model to determine the optimal placement of tow trucks
using traffic theory in combination with marginal benefit analysis.

Yin (2006) suggested a min-max bi-level programming model which assigns tow trucks
to freeway service patrol beats. The objective is to minimize the maximal total travel time
that may be caused by the incidents. However, it was assumed that the number of incidents
is deterministic. Later Yin (2008) dealt with the randomness in the incident occurrence with
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a scenario-based approach and proposed a mixed-integer nonlinear programming model.
Each scenario corresponds to a specific number of incidents occurring on each beat and
the objective is to find a truck assignment which performs well under all scenarios. Lou
et al. (2011) proposed a similar study where the coverage of the freeway segments by the
beats has been considered in addition to the allocation of freeway service trucks. They pre-
sented two mixed-integer nonlinear programming models: one with deterministic travel time
and number of incidents, the other one (scenario-based) with random incidents and travel
times. Articles such as Yin (2006, 2008), Lou et al. (2011) and references therein discuss
deployment of freeway service patrol (FSP) trucks. These models are not directly applica-
ble (also stated in Lou et al. 2011) because FSP trucks are not dispatched in response to
an incident. Instead, they are mobile emergency response units that independently roam the
freeways to detect, respond to, and clear traffic incidents. But the models in this paper dis-
cuss location-allocation models for locating emergency response vehicles and determining
optimal strategies for locating and dispatching those, introducing probabilistic constraints.

In a different context, Sherali et al. (2004) considered an emergency management prob-
lem aftermath of a natural disaster, a terrorist attack or an earthquake and they proposed a
non-convex programming model for allocating emergency response resources to minimize
the risk.

Opportunity cost-based models proposed by Sherali and Subramanian (1999) demon-
strated that dispatching the closest available vehicle to the site of the current accident might
not be optimal when considering the service to anticipated demands. To make this model
polynomial-time solvable, the number of response vehicles required by each incident was
considered to be the same, and each depot was assumed to have the same number of avail-
able vehicles. In practice, this might not be true. Due to day-to-day uncertainties, such as
response vehicle breakdown, lack of drivers, etc., it is always possible to have an insufficient
number of vehicles at any given day, and, the severity of accidents also varies significantly.
In general, severe incidents need more response vehicles than minor incidents.

Thus, the resource demand in an incident management problem can be summarized as
follows:

(1) It is stochastic. The available resources are stochastic and the occurrences and charac-
teristics of incidents are stochastic.

(2) It is a network problem. The incidents occur randomly over the roadway network,
and the location of the depots should be chosen carefully based on the topology of the
network.

(3) It is a resource allocation problem. Resources should be allocated wisely among indi-
vidual depots and between depots and patrol service to maximize the return on invest-
ment (ROI).

In this paper, we attempt to address the traffic incident management, as an operation plan-
ning problem for a given time horizon. We specifically take into account the interaction be-
tween the probabilistic occurrence rates of accidents requiring different levels of resources
and the availability of adequate number of incident response units, using a stochastic pro-
gramming approach. Mainly, the ideas in this paper follow the concepts in Sherali and Subra-
manian (1999) where they introduced “multiple-incident multiple-response (MIMR)” model
seeking to find an optimal assignment of response vehicles to incidents to minimize the sum
of service and opportunity cost. We develop an MIMR model by recognizing that there is
a risk that some incidents might be left without service for an insufficient vehicle fleet. We
propose using system-wide reliability to measure the quality of service in the network, in-
volving multiple potential incidents and a variable number of response vehicles. A threshold
confidence level is to be satisfied in servicing the incidents on the network.
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We use the concept of quality of service and propose mathematical programming models
with probabilistic constraints to model the stochastic incident response problem. Probabilis-
tic constraints are first introduced by Charnes et al. (1958) in the storage of heating oil to
meet random demands but they introduced only individual probabilistic constraints.

The joint probabilistic constrained problems have also been studied and applied for many
practical problems including location and coverage problems, also adopted in this paper
for emergency vehicles. The joint probabilistic constraints formulations which are more
challenging both from theoretical and algorithmic points of view, were studied by Miller
and Wagner (1965) and Prekopa (1970, 1973). Later, probability constraints are used in the
set covering location problem under the assumption that servers could be independently
unavailable and with the identical probability (Chapman and White 1974; Aly and White
1978), and in the maximal covering problem (ReVelle and Hogan 1989, see also Ball and
Lin 1993) with independent but individual busy probabilities. Pal and Bose (2009) extended
the reliability formulation in Ball and Lin (1993) and proposed a mixed integer programming
model that locates the incident response depots and assigns response vehicles to these depots
at a minimum cost. Note that in these models demand is for a single emergency service. On
the other hand, in the models presented in this paper, multiple potential incidents having
various demands for response vehicles are allowed, and the number of available response
vehicles at each depot might be non-deterministic. The probability distributions of demand
for resources on each node are allowed to be correlated.

In the case of resource allocation, some areas in the transportation network may have a
higher probability of experiencing serious incidents than others, due to heavy traffic condi-
tions or complex roadway characteristics. Thus, more resources should be allocated to those
depots that are located closer to these high risk areas. Given the probability distribution of
demand for resources over the network, we propose a stochastic integer programming (IP)
model to determine the optimum level of resources, and the best way to allocate resources
over the transportation network.

The remainder of this paper is organized as follows. In the next section, we introduce
a traffic incident response problem formulation that captures the uncertainty of demand
for resources and availability of resources. An IP model with probabilistic constraints and
discrete random variables is proposed to address this problem with consideration given to the
requirements at the sites of potential incidents. Another stochastic IP is introduced to solve
the resource allocation problem. In Sect. 3, we provide a case study which is an application
of the resource allocation model that deals with tow truck allocation to depot sites located
on the South New Jersey road network. The solution methodology is briefly explained in
Appendix. Paper concludes with a brief summary of results in Sect. 4.

2 Problem formulation

In this paper, we consider two types of incident management (IM) problems: (1) One is the
incident response problem, where we determine the optimal resource assignment policy for
possible incidents that might occur simultaneously; (2) The other is the resource allocation
problem that will allow transportation agencies to determine the optimal location of each
depot and the optimal number of vehicles assigned to the depots. We approach both of these
problems as planning problems for a given time horizon.

Let us first introduce the mathematical notation used in this paper. Let G(N,L) be the
road network, and N and L be its node and link sets, respectively. Let D denote the set of
special type of nodes, the depots, from which service vehicles are assigned, H denote the
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node set where potential incidents might occur. In addition, let ri be the number of service
vehicles available, thus idle, in depot i ∈ D, and Nh the number of service vehicles that
might be required by a possible incident at node h ∈ H . Here, service vehicle is an abstract
concept for any type of vehicles that might be needed to clear the incidents. In practice, it
could be tow trucks, ambulances, police cars or fire trucks. In this paper, we consider Nh as
a scalar random variable governed by the probability distribution, P {Nh = k}, that gives the
probability of an incident per planning time unit requiring k response-vehicles at node h.
In the case that multiple incidents occur at various nodes, the joint probability distributions,
P {Nh1 = k1,Nh2 = k2, . . .}, are assumed to be known, so that the marginal distributions
could be obtained. Although Nh could be 0 even if an incident occurs, here we assume that
Nh = 0 means no incident occurs at node h. Thus, P {Nh = 0} = 1 − Ph, where Ph denotes
the probability of an incident at node h per unit planning time, and

Ph =
∞∑

k=1

P {Nh = k}.

Finally, decision variables yih denote the number of service vehicles in depot i allocated to
an incident that might occur at node h ∈ H . We employ the concept of quality of service to
quantify the system reliability in the presence of traffic incidents.

Definition 1 Quality of Service parameter Qservice ∈ [0,1] represents the lower bound of the
probability that all resources requested by all incidents will be satisfied.

It is worth mentioning that in the incident response problem, Qservice = 0 signifies that
the possibility of incidents are not considered at all, while Qservice = 1 means the maximum
possible resource demand by all incidents is taken into account. In the context of resource
allocation problem, the quality of service makes more sense if we consider it as a measure of
system reliability. Higher quality of service guarantees that more incidents can be cleared in
a timely manner, thus achieving higher reliability of the transportation system. The effects
of quality of service on the determination of optimal incident response policy and resource
allocation strategy are discussed in the subsequent sections using real-world examples.

2.1 Incident response under demand uncertainty (P1)

This subsection focuses on how to assign response vehicles to incidents if future demand
for resources is considered to be non-deterministic. In the proposed model, this probabilistic
nature is reflected in the cost function as well as the constraint set. Note that, the vehicle
requirement for incidents follows a discrete probability distribution (this distribution can
be derived from the previous accidents by observing the frequency of number of vehicles
required).

Given the quality of service level Qservice, the proposed model is formulated as follows:

(P1)

Minimize E{Total Response Time} (1a)

Subject to
∑

h∈H

yih ≤ ri, ∀i ∈ D, (1b)

P

(∑

i∈D

yih ≥ Nh,∀h ∈ H

)
≥ Qservice, (1c)

yih ≥ 0, and integer, ∀i ∈ D, h ∈ H, (1d)
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where

yih: number of service vehicles dispatched from depot location i to potential incident
location h,

ri : number of service vehicles available in depot i ∈ D, and
Nh: number of service vehicles that might be required by a possible incident at node

h ∈ H ,
Qservice: system-wide quality service level that represents the lowest level of reliability to

satisfy the potential incidents occurring anywhere in the network promptly, and
Qservice ∈ [0,1].

The objective function minimizes the expected total response cost. The response cost is the
vehicle delay (vehicle-hours) due to simultaneous incidents. By writing the objective func-
tion this way, the response cost is minimized while the given service quality for simultaneous
incidents is guaranteed. If we do not consider the possibility of incidents, i.e., Qservice = 0,
then any yih value will satisfy constraint (1c), thus minimizing the objective function forces
yih = 0. Consequently, there is no cost in this case. Note that, one can also enforce a priority
structure on the incident locations depending on the traffic volume that will be affected by
the incident. This could be done by assigning weights, wh’s, between 0 and 1 to each node,
where 0 corresponds to very low priority, 1 corresponds to the highest priority node. These
weights are assigned with respect to the historical traffic volume data.

Constraint (1b) states that the total number of vehicles assigned from a depot should be
less than or equal to the number of vehicles available at that depot. Constraint (1c) requires
that the joint probability of meeting the response-vehicle requirements at each potential
incident site h ∈ H , is greater than or equal to a given quality of service.

To simplify the objective function, given that an incident occurs at node h, we define tih
as the expected travel time on the shortest route from depot i to node h. Any route may
include multiple links. We assume here that the incident only affects node h, and not the
other nodes. Thus, the expected response time is given below in terms of Ph, instead of the
joint probability distribution of incidents on every node, as:

Minimize
∑

i∈D

∑

h∈H

whPhtihyih. (1.1a)

2.2 Incident response under resource uncertainty

In addition to the fact that resources required by potential incidents are not deterministic,
resources available at the depots might be uncertain due to break-downs or other unexpected
factors. Similarly we also employ the concept of resource reliability to quantify vehicle
availability in the presence of traffic incidents.

Definition 2 Resource reliability Qresource ∈ [0,1] represents the lowest probability that the
resources at every depot location will be available to respond to all incidents.

In this case, we can formulate the problem nearly the same way as problem (P1), except
that constraint (1b) is replaced by the following probabilistic constraint,

P

(∑

h∈H

yih ≤ Ri,∀i ∈ D

)
≥ Qresource, (2)

where Ri is a discrete random variable denoting the number of response vehicles available
at depot i, (different than the deterministic capacity level, ri in (1b)) and Qresource denotes
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the given quality of service for response vehicle availability, which is determined by the
decision makers.

2.3 Resource allocation problem (P2)

The goal of a resource allocation problem in the context of traffic incident management is
to determine optimal locations of each depot and the optimal fleet size of response vehicles
at each depot to minimize the overall response costs, while meeting the budget constraint.
Since this problem is a long-term planning problem, probability of an incident on each road
for the whole planning horizon is assumed to be equal to 1, i.e., Ph = 1, ∀h ∈ H . One of
the constraints of this problem is that the resources allocated over the network should be
sufficient to adequately address all incidents. As before, assume we know the probability
distribution of resource demand at node h, which is governed by the random variable Nh.
Given the reliability requirement of this incident response system, the resource allocation
problem can be formulated as an IP with probabilistic constraints.

(P2)

Minimize
∑

i∈D

∑

h∈H

whPhtihyih (3a)

Subject to
∑

h∈H

yih ≤ ri, ∀i ∈ D, (3b)

P

(∑

i∈D

yih ≥ Nh,∀h ∈ H

)
≥ Qservice, (3c)

ri ≤ Mdi, ∀i ∈ D, (3d)

c1

∑

i∈D

ri + c2

∑

i∈D

di ≤ B, (3e)

yih ≥ 0, and integer, ∀i ∈ D, h ∈ H,

ri ≥ 0, and integer; di binary, ∀i ∈ D. (3f)

We use the same notation as in the previous sections. In addition, we use M to denote a large
enough number, B to denote the budget limit, and let c1 and c2 be the unit cost for service
vehicles and the construction cost for a single depot respectively. di ’s for each node i, are
binary variables defined as follows:

di =
{

1 if node i is a depot (ri > 0),

0 otherwise.
(4)

Constraint (3c) states the reliability of the incident response system, namely, the joint proba-
bility of satisfying the resources requested by each incident should be greater than or equal to
a given value. Constraint (3d) states the logical relationship between di and ri . If di = 0, then
ri must be 0; otherwise, ri could be any positive number less than M . Constraint (3e) states
that the budget constraint must be satisfied. The objective function is the sum of weighted
response time.

The assumption that the depot locations are known is a realistic one since it is costly
to build new depots and not a very practical approach for the short and mid-term policy
decision. However, it is very important to know the optimal number of service vehicles
needed in a given network.
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As it is mentioned before, the main contribution of the paper is modeling explicitly the
requirements of multiple response vehicles by incidents and formulating incident manage-
ment problem using probabilistic constraints, as given in (1c) of problem (P1) and (3c) of
problem (P2) which signify the stochastic characteristics of the requirements. In our case,
the response vehicle requirements have discrete probability distributions. In Appendix, we
review the methods proposed in Prekopa (1990, 1995) and Prekopa et al. (1998) to solve
mathematical programming models with probabilistic constraints. This approach computes
the Pareto frontiers (also known as p-efficient points) using a recursive enumeration algo-
rithm (named as p-lep algorithm), given in Prekopa et al. (1998) for a given discrete distri-
bution. After we obtain p-efficient points, probabilistic constraints (1c) in problem (P1) and
(3c) in problem (P2) can be handled as in (A.2) of Appendix and these problems can be
formulated as in (A.3) and further as in (A.4), shown in Appendix, which are solvable by
many software packages.

The time-efficiency of this enumeration algorithm is not a major concern for a realistic
incident management problem, because the number of routes considered in a typical trans-
portation network is limited mainly to the major routes. Thus the enumeration of p-efficient
points approach proposed by Prekopa et al. (1998) is a feasible technique. Based on this al-
gorithm, we developed a computer program in C++, which runs very fast for the case study
presented in Sect. 3 and others with several hundred nodes similar to them.

However, in some cases, for example, for multidimensional random vectors ξ , the num-
ber of p-efficient points can be quite large and their enumeration may be difficult. It would be
desirable, therefore, to avoid the complete enumeration and search for promising p-efficient
points only. In this case, the solution method does not find all p-efficient points but builds
them up subsequently by the use of cutting plane method. The detailed discussion is given
in Prekopa et al. (1998).

3 A case study

In this section, we present an example to demonstrate the applications of the stochastic pro-
gramming models proposed for incident management decision support. The example used to
illustrate the solution of a realistic resource allocation problem, formulated as problem (P2)
in this paper, is applied to a simplified version of South Jersey highway network where there
is already an active incident management program. In this example, given the requirement
of service quality, we determine the minimum resources allocated to the system in order to
maximize the investment on return value.

3.1 Resource allocation problem (P2)

We consider a portion of South New Jersey road network which consists of seven major
roads depicted in Fig. 1.

The distribution of the demand for the tow trucks is based on the analysis of the traffic
incident data in South New Jersey.

By categorizing traffic incidents that occurred in years 2000 and 2001 in Table 1, and
assuming that an average number of tow trucks required by each category is based on the
severity of incidents, as listed in the first column of Table 1, we obtain the probability values
which are presented in Table 2. The average travel times along each route with and without
incidents are obtained by a traffic simulation software package developed at Rutgers In-
telligent Transportation Systems (RITS) Laboratory, and which is based on Daganzo’s cell
transmission model (Daganzo 1994). The results are also shown in Table 2.
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Fig. 1 Portion of the South Jersey roadway network used in this study

Table 1 Number of incidents on the major routes in South Jersey study network (2000–2001) (Values in the
parenthesis are the average numbers of trucks requested by the incident in that category)

Category US 30 NJ 38 NJ 42 I-76 US 130 I-295 I-676

HAZMATa (4) 2 3 2 2 3 13 3
Vehicle-fire (3) 1 1 11 5 2 27 2
Weather-related (1) 9 3 1 1 6 3 3
Disablement-No Blocked Lanes (1) 0 2 2 3 1 6 1
Disablement-Blocked Lanes (2) 0 1 6 6 1 11 4
MVAb-Day Time-No Blocked Lanes (1) 21 21 22 36 30 94 8
MVAb-Day Time-Blocked Lanes (2) 12 14 24 25 12 81 10
MVAb-Night Time-No Blocked Lanes (1) 3 2 1 7 5 8 3
MVAb-Night Time-Blocked Lanes (2) 3 2 7 12 2 21 1
Total 51 49 76 99 62 264 35

aHazardous material

bMultiple Vehicle Accident

The road network is then modeled as a graph shown in Fig. 2. Although in this exam-
ple, each node corresponds to a route; our model allows more refined analysis by divid-
ing the route into various sections, thus representing one route as a collection of multiple
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Table 2 Average travel time and distribution of requested tow trucks on each route

Route # Route Average travel time (s)
without incidents

Average travel time (s)
with incidents

Distribution of requested
tow trucks
1 2 3 4

1 US 30 754 6041 0.647 0.294 0.02 0.039
2 NJ 38 286 313 0.571 0.347 0.021 0.061
3 NJ 42 554 616 0.342 0.487 0.145 0.026
4 I-76 242 4301 0.484 0.443 0.052 0.021
5 US 130 1246 1666 0.677 0.243 0.032 0.048
6 I-295 773 5138 0.421 0.428 0.102 0.049
7 I-676 305 4426 0.429 0.429 0.057 0.085

Fig. 2 Simplified graph
representation of the South Jersey
road network

Table 3 Average travel time between each pair of nodes (seconds)

US 30 NJ 38 NJ 42 I-76 US 130 I-295 I-676

US 30 6041 1067 1917 5360 2420 5892 5180

NJ 38 6327 313 2203 5646 1952 6178 5466

NJ 42 7142 2168 616 4855 1765 5692 5222

I-76 6588 1614 858 4301 1908 5380 4673

US 130 7287 1559 1407 5547 1666 6384 5914

I-295 6814 1840 1389 5074 2439 5138 5441

I-676 6364 1372 1163 4606 2213 5685 4426

nodes. A link between two nodes implies there is an intersection that connects these two
routes.

We assume the time for the tow truck traveling from its depot to the site of the incident
on the same route is the average travel time of this route under the impact of incidents. If
tow trucks that belong to another route are sent from the depot, then the total traveling time
of the tow truck would be the summation of the average travel time of each node along the
shortest path from the depot to the site of the incident and the average traveling time with
incidents of the ending nodes. Based on these assumptions and the shortest path algorithm,
the travel time between every two nodes are obtained as in Table 3.
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Table 4 p-Efficient points for
Qservice = 0.9 Point number US 30 NJ 38 NJ 42 I-76 US 130 I-295 I-676

1 2 4 3 4 4 4 4

2 2 4 4 3 4 4 4

3 3 3 4 4 4 4 4

4 3 4 3 3 4 4 4

5 4 4 3 3 4 3 4

6 4 4 3 3 3 4 4

7 4 3 3 4 4 4 4

8 4 3 4 3 4 4 4

9 4 2 4 4 4 4 4

10 4 4 3 2 4 4 4

11 4 4 4 4 4 4 3

12 4 4 4 4 3 3 4

13 3 4 4 4 3 4 4

14 4 4 4 3 2 4 4

15 3 4 4 4 4 3 4

The number of tow trucks sent to an incident site is determined by the attributes of the
incident. If the number of tow trucks requested by the incident exceeds the number of the
available tow trucks in the nearest depot, then the rest of the trucks would be sent from
the next nearest depot with idle trucks. Given the probability distribution of incidents and
the average travel time at hand, we will proceed with the resource allocation analysis on
South Jersey roadway network in two steps. First, we assume that tow truck depots exist
along these routes, and we just need to determine the number of tow trucks assigned to each
depot. Second, we determine the location of depots and the number of tow trucks allocated.

Now, assuming there is a depot constructed on each route, to maximize the return on
investment, we need to determine the minimum number of tow trucks allocated to each route,
while satisfying a given quality of service. Assume that there is no priority structure among
the incident sites, giving all wi ’s equal to 1. Let yij be the number of tow trucks assigned
from the depot on route i to the site of incident on route j , and tij be the corresponding
travel time. The objective function of this problem can be represented as

Minimize
7∑

i=1

7∑

j=1

tij yij . (5)

The p-efficient points for the given probability distribution in Table 2 are calculated using
p-lep algorithm presented in Prekopa et al. (1998). If the service guarantee level, Qservice is
0.9 the p-efficient points are presented in Table 4.

Let nkj be the demand for tow trucks on route j according to the kth p-efficient point, and
let λk be the corresponding coefficients which satisfy

∑15
k=1 λk = 1. If we do not consider

the budget limitation, then the main constraints of this optimization problem are:

7∑

j=1

yij ≤ ri, ∀i = 1, . . . ,7, (6a)

7∑

i=1

yij ≥
15∑

k=1

λknkj , ∀j = 1, . . . ,7, (6b)
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Table 5 Optimal number of tow
trucks assigned to each route for
various Qservice levels

Qservice US 30 NJ 38 NJ 42 I-76 US 130 I-295 I-676 Total

0.5 2 2 3 2 2 2 2 15

0.7 2 4 4 2 4 3 2 21

0.9 2 4 4 3 4 4 4 25

15∑

k=1

λk = 1, (6c)

λk ≥ 0, ∀k = 1, . . . ,15,

yij ≥ 0, and integer, ∀i = 1, . . . ,7; ∀j = 1, . . . ,7, (6d)

ri ≥ 0, and integer, ∀i = 1, . . . ,7.

Here, since the decision variable yij is an integer the problem (P2) is formulated into the
relaxed form as the problem (A.4) given in Appendix. The probabilistic constraint (3c) of
problem (P2) is written as a convex combination of the p-efficient points nkj in constraints
(6b) and (6c).

Using LINDO 6.1 (LINDO Systems Inc.) to solve this problem, we achieve the optimal
resource allocation strategy. Similarly, we can compute the optimal number of tow trucks
assigned to each route for various Qservice values which is summarized in Table 5.

Note that the numbers of tow trucks we obtained in Table 5 are very conservative. In prac-
tice, the probability of having more than one incident simultaneously is quite low. Without
lowering the quality of service, to avoid expensive costs due to the purchase of tow trucks
and expensive maintenance cost for a large fleet, what the traffic management center (TMC)
usually does is to sign service contract with private companies. For example, to achieve
the ninety percent quality of service level, the TMC can probably have 4 tow trucks of its
own, which is the maximum number of tow trucks a single incident might request, while the
remaining tow trucks could be gathered from private contractors.

Without a surprise, to improve the quality of service more tow trucks are required. How-
ever, it is worth to note that the number of tow trucks assigned to each route does not increase
simultaneously as higher quality of service is targeted. For instance, if the Qservice value in-
creases from 0.5 to 0.9, US 30 keeps the same number of tow trucks while NJ 38 increases
its need for more tow trucks rapidly. This happens as a result of the overall travel time from
US 30 being much longer than NJ 38. To cover potential incidents, assigning more tow
trucks to NJ 38, instead of US 30, is a wiser choice. If the budget and operational limitations
can only afford to sign contracts with 21 tow trucks, then the quality of service for the whole
system cannot exceed 0.7.

Now, considering a brand-new incident management system, we need to determine the
location of depots and number of tow trucks assigned to each depot. Our objective function is
still to minimize the incident management cost while subject to certain budget constraints.
By assuming that the annual operation cost of a single tow truck is $10,000, the annual
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Table 6 Optimal location of depots and the number of tow trucks assigned for various Qservice levels

Qservice US 30 NJ 38 NJ 42 I-76 US 130 I-295 I-676 Total trucks Total depots

0.5 4 5 6 15 3

0.7 6 15 21 2

0.9 6 19 25 2

cost of a depot is $100,000, and the total annual budget for this tow truck-depot system is
$500,000, then the constraints for this problem are given as below:

7∑

j=1

yij ≤ ri, ∀i = 1, . . . ,7,

7∑

i=1

yij ≥
15∑

k=1

λknkj , ∀j = 1, . . . ,7,

15∑

k=1

λk = 1,

ri ≤ M · di, ∀i = 1, . . . ,7,

7∑

i=1

ri + 10
7∑

i=1

di ≤ 50,

λk ≥ 0, ∀k = 1, . . . ,15,

yij ≥ 0, and integer, ∀i = 1, . . . ,7; ∀j = 1, . . . ,7,

ri ≥ 0, and integer; di binary, ∀i = 1, . . . ,7.

(10)

Similarly, we use the LINDO system to solve the problem above. Since the version of
LINDO we are using can only handle a maximum 50 integer variables, we relax y’s as
continuous variables and keep ri as integer and di as binary variables. The y values we
obtain in our optimal solution turned out to be integers automatically. Table 6 shows the
results for various Qservice levels.

We can see the total numbers of tow trucks we obtained in Table 6 are the same as
Table 5, but much less depots are needed to reach the same level of quality of service. This
result shows that if we could design an incident management system from scratch and locate
depots optimally, we can even lower our costs due to the reduced number of depots required.

4 Summary and conclusion

In this paper, we proposed mathematical programming models with probabilistic constraints
to account for the future service demands to determine feasible solutions for the incident re-
sponse problems. The probabilistic constraints are derived from the uncertainty in the num-
ber of service vehicles requested by the potential incidents and the number of service vehi-
cles available at the depot. Quality of service is introduced as a way to measure the impact
of incident occurrence probabilities and availability of resources in planning for assignment
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policies. High quality of service means that incident response policy for the current set of in-
cident occurrence probabilities will be able to respond to all incidents in a more reliable way.
To put it in another way, high quality of service for the potential incidents is a conservative
practice, while low quality of service means high risk. If the anticipated incidents really oc-
cur, a response policy based on a very high quality of service will have lower actual response
cost compared to a lower quality of service value. We assume the distributions of resources
requested by the potential incidents are known, and, from which p-efficient points could
be obtained for a given quality of service requirement. Thus, the impact of quality of ser-
vice is also carefully studied in this paper. The proposed formulation gives us the minimum
cost response policy under the pre-selected quality of service requirements given resource
and incident occurrence likelihoods. Of course, increasing the level of service requirement,
will either increase the minimum response costs or will make the problem infeasible for the
current constraints. Then the decision maker can select to increase the amount of available
resources or reduce the quality of service requirements meaning that he/she will be willing
to take higher risks for potential accidents that are likely to occur according to a probability
distribution function estimated using historic data.

Considering the probability distribution of potential incidents over a transportation net-
work, we also constructed probabilistic programming models to address the resource allo-
cation problem for an incident management system. We consider a distributed-depot config-
uration, in which we need to determine the minimum number of service vehicles allocated
to each depot in order to meet the reliability requirements of this system. This offers the
planners the capability of considering inherent uncertainty of the system when they attempt
to determine the solution that maximizes the return on investment, while remaining within
certain budget constraints. In the case study of the South New Jersey road network, we com-
pute the probability distribution of demand for tow trucks along the eight major roads by
analyzing two years of incident data in this area. Based on these distributions, probabilistic
programming models are constructed, and the minimum number of tow trucks allocated to
each major road for various reliability requirements is obtained. For the planning of a new
incident management system, our case study shows how to determine the locations of depots
and the number of service vehicles assigned to the depots within the budget limits.

The mathematical programming models with probabilistic constraints discussed in this
paper are solved using the concepts and algorithms presented in Prekopa et al. (1998). We
also developed a computer program to enumerate all of the Pareto efficient (p-efficient)
points for any multidimensional discrete random variable. Compared to the other models in
the literature, our model has the following salient features:

(1) The concept of quality of service offers the flexibility in measuring the impact of poten-
tial incidents. This adds to the realism of the model by being able to take into account
various incident occurrence probabilities.

(2) Our model can also capture the uncertainty of the resource availability and can help the
decision makers to better understand the reliability of the incident management policies
they adopt.

(3) More importantly, this model can accurately capture the varying probabilities of simul-
taneous incident occurrences. The analysis of real-world incident data shows that the
incident occurrence is quite random and our model can take this uncertainty into ac-
count.

Naturally, the proposed model needs to be further improved to be implemented in real-life
applications. Additional incident response data for a larger network need to be collected to
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better estimate the probability distributions used by the model in (P1). This data include
actual characteristics of accidents, number and type of response vehicles associated with
each accident and incident as well the arrival and departure time of these resources. This
can be a quite involved data collection effort. However, many states have started to collect
this type of performance data and it would be possible to have access relatively accurate
and detailed incident response data in the near future. Aside from data required for the
probabilistic aspects of the model, it can be improved by adding additional terms in the
objective function beside the constraints that can capture the expected change in route travel
times as a result of accidents. This will be an important enhancement to the introduce model
since it will enable the model to capture the network effects of accidents in terms of delays
incurred as a result of various types of accidents. Additionally, improvements in terms of
adding route travel times would be to represent these travel times as distributions rather than
point estimates. This will improve the realism of the model. Moreover, a time dimension that
reflects the order in which resources are allocated and the impact of various time-dependent
resource assignment strategies on the overall quality of service can be added. However,
this type of addition is expected to further complicate the model from both theoretical and
computational points of view.

In brief, the models presented in this paper can be used by the State Departments of
Transportation to evaluate and improve existing Incident Management programs and to plan
the future ones.

There are several opportunities for future research including: (1) model in (P1) should
be improved considering the stochastic nature of the response times; (2) collect additional
incident response data to develop new case studies especially with the goal of comparing
the current practice with the type of decision making approach proposed in this paper that
requires a very detailed computational study in addition to long-term incident response and
management data collection; (3) conduct a detailed numerical study of computational as-
pects of these models using additional case studies; (4) a modified version of the model(s)
proposed in this paper can be useful for “staffing at peak” question for transit operators
under normal as well as rare conditions such as emergency evacuation problems.

Appendix

A.1 Stochastic programming review

Stochastic programming problems, similar to the ones proposed in the previous sections, are
formulated in terms of a random vector ξ ∈ Rr , ξ = (ξ1, . . . , ξr )

T , x ∈ Rn and r ×n matrix T .
The symbol P denotes probability. If we require that the constraint T x ≥ ξ should hold at
least with some given probability p ∈ (0,1), rather than for all possible realizations of the
right hand side, then the following formulation is obtained:

Minimize cT x

Subject to P(T x ≥ ξ) ≥ p,

Ax ≥ b,

x ≥ 0,

(A.1)

where the first constraint is a probabilistic constraint.
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Because the variables in our model are integers, we concentrate on the stochastic pro-
gramming with discrete random constraints. Let ξ be an r-dimensional discrete random
vector. Note that the ith element of ξ , ξ

i
is a discrete random variable taking particular val-

ues zi , and we assume the number of possible values of this discrete random variable is ki .
Before we continue with the description of the solution approach, we shall first introduce
the concept of a p-efficient point, defined in Prekopa (1990) and Prekopa et al. (1998) as
follows.

Definition A point z is called a p-level efficient point (p-lep) of a probability distribution
function F , if F(z) ≥ p and there is no y ≤ z, y �= z such that F(y) ≥ p, where p ∈ (0,1).

Let the set of all p-lep’s denoted by Zp = {z(1), z(2), . . . , z(N)}, where N shows the num-
ber of p-lep’s. To enumerate the p-level efficient points for a multidimensional discrete
probability distribution, Prekopa et al. (1998) proposed a recursive algorithm. When we
enumerate the p-lep’s in �r (r-dimensional Euclidean space), it is assumed that an enu-
meration technique in �r−1 is available for functions which are not necessarily proba-
bility distribution functions in the sense that the sum of all probabilities may be smaller
than 1.

With the set of all p-efficient points, Zp = {z(1), z(2), . . . , z(N)}, where N denotes the num-
ber of p-efficient points, an equivalent form of (A.1) can be formulated as follows (Prekopa
et al. 1998):

Minimize cT x

Subject to T x ≥ z(i), ∀z(i) ∈ Zp,

Ax ≥ b,

x ≥ 0.

(A.2)

A straightforward way of solving (A.2) is to find all p-efficient points and to pro-
cess all corresponding problems. For example, problem (A.2) can be solved exactly by
the solution of N linear programming problems, where the ith linear programming prob-
lem has the constraint T x ≥ z(i). If x(i) is the optimal solution of the ith problem and
cT x(i) = min1≤j≤N cT x(j), then x(i) is the optimal solution of (A.2). For those problems
with a meager number of p-efficient points and a small enough matrix T , this method
is efficient. If the random variables in the probabilistic constraints are r-concave (see
Dentcheva et al. 2000), we can obtain an equivalent formulation with a more convenient
structure.

Many well-known one-dimensional discrete probability distributions are r-concave
distributions-to name a few, Poisson distribution, geometrical distribution, and binomial
distribution (Prekopa 1995). Binary random vectors and scalar integer random variables
are also r-concave. If ξ in (A.1) is an integer random vector and its probability distribution
function is r-concave, then an equivalent representation of (A.2) can be obtained as (see
Dentcheva et al. 2000):
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Minimize cT x

Subject to Ax ≥ b,

T x ≥ v,

v ≥
N∑

i=1

λiz
(i), z(i) ∈ Zp,

N∑

i=1

λi = 1,

x ≥ 0, v integral,

λi ≥ 0, i = 1, . . . ,N.

(A.3)

Moreover, if T x is integer, then (A.3) can be simplified further into an equivalent form:

Minimize cT x

Subject to Ax ≥ b,

T x ≥
N∑

i=1

λiz
(i), z(i) ∈ Zp,

N∑

i=1

λi = 1,

x ≥ 0,

λi ≥ 0, i = 1, . . . ,N.

(A.4)

It is worth noting that if there are no conditions implying that T x is integer, then problem
(A.4) cannot be used to solve problem (A.2). In fact, the objective value of (A.4) is the lower
bound of the original problem by relaxing the constraints of (A.2). Since the number of
service vehicles dispatched should always be an integer and the matrix T has integer entries
in the resource allocation problem discussed in this paper, solving the simplified formulation
(A.4) yields the same optimum solutions as to the original problem. After we obtain p-
efficient points using the enumeration algorithm, problems (P1) and (P2) can be simplified
into the formulation shown in (A.4), which is solvable by many software packages.
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